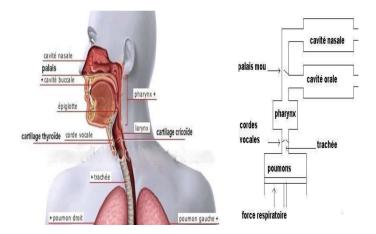
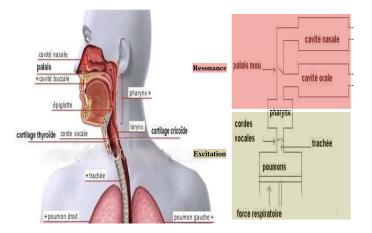
Audio Signal Processing : V. Speech processing

Emmanuel Bacry

bacry@ceremade.dauphine.fr http://www.cmap.polytechnique.fr/~bacry

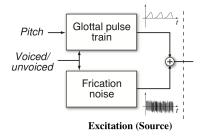


Towards an Excitation/Resonance model



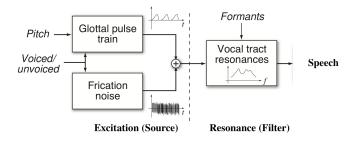
Hypothesis : Excitation and Resonance parts are independant

Towards an Excitation/Resonance (Source/filter) model



The Excitation part.....

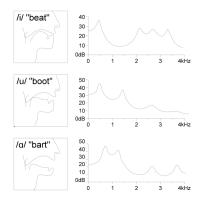
Towards an Excitation/Resonance (Source/filter) model



... followed by the Resonance part

Vowels

- Excitation : Glottal pulse train
- Pitch = train period
- Which vowel = given by resonance



source : Mike Brookes

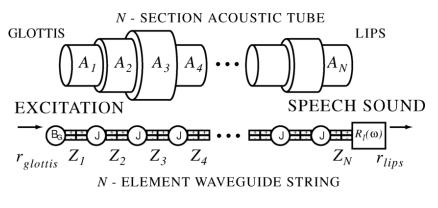
Consonant

- Plosives : brutal opening of the vocal tract
- Fricatives : constriction of the vocal tract
- Nasals
- and many more ...

Consonant : a little game

	plosives	fricatives
palatal	?/?	?/?
labial	?/?	?/?
dental	?/?	?/?

Voiced/Unvoiced



Each tube $\implies \simeq AR(2)$

The Resonance model

- Sum of formant (resonance)
- Each formant $\simeq AR(2)$
 - ω_0 : resonance frequency
 - $\Delta \omega$: band width
 - A : gain
- Resonance $\simeq AR(2N)$ filter H_{2N}
 - (4-5 formants are enough for vowel recognition)
- Lips radiation : High-pass filter $1 Z^{-1}$

A. A Glottal pulse train model

- Glottal pulse train of wave form $\simeq Ag(t)$ (with $\int g(t)dt = 1$)
- Amplitude : A
- Period : T
- Support of g << T

$$G(t) = \sum_{n} Ag(t - nT) = Ag \star \sum_{n} \delta(t - nT)$$

A. A Glottal pulse train model

$$G(t) = Ag \star \sum_{n} \delta(t - nT) \Longrightarrow \hat{G}(\omega) = \frac{2\pi A}{T} \hat{g} \sum_{n} \delta(\omega - \frac{2\pi k}{T})$$

- Pitch is 1/T (fundamental frequency)
- Glottal train + Resonance $(H_{2N} : AR(2N))$

$$H_{2N} \star G(t) = AH_{2N} \star g \star \sum_{n} \delta(t - nT)$$

• Resonance approximation : we take care of g in the resonance part

$$H_{2N} \longrightarrow H_{2N} \star g$$

A. A Glottal pulse train model

A simple final model

$$G(t) = A \sum_{n} \delta(t - nT)$$

With only two parameters

- A : Amplitude
- T : Period

B. A Frication noise model

$$F(t) = Ah \star W(t)$$

where

- W(t): is a normalized white noise
- A : Amplitude
- h(t) : is a low pass filter

B. A Frication noise model

$$F(t) = Ah \star W(t)$$

Frication + resonance :

$$H_{2N} \star F(t) = AH_{2N} \star h \star W(t)$$

 \implies Resonance approximation : we take care of h in the resonance part

$$H_{2N} \longrightarrow H_{2N} \star h$$

B. A Frication noise model

A simple final model

F(t) = AW(t)

With a single parameter !

• A : Amplitude

- Excitation : Frication
- Resonance : AR(N) filter
- \implies AR Processes

Definition of AR(N) process X[n]

$$X[n] + \sum_{k=1}^{N} a_k X[n-k] = W[n]$$

where

- W[n] is a white noise of variance σ^2
- $\{a_k\}_{k\in[1,N]}\in\mathbb{R}^N\ (a_0=1)$

 $a \star X[n] = W[n]$

$$a \star X[n] = W[n]$$

A first important question :

• Is there a stationary solution ?

 $a \star X[n] = W[n]$

A first important question :

• Is there a stationary solution ?

YES : if the inverse filter of *a* is stable \iff All the zeros of $\hat{a}(Z)$ are such that |Z| < 1

$$a \star X[n] = W[n]$$

A second important question :

• How do we manage initialization ?

$$a \star X[n] = W[n]$$

A second important question :

- How do we manage initialization ? (stationarity ?)
- **Theorem** if $\{Y[n]\}_n$ is a process such that

 $h \star Y[n] = 0$

where h[n] is a FIR filter, then

 $\lim_{n \to +\infty} Y[n] = 0 \quad \text{iff} \quad \hat{h}(Z_i) = 0 \Leftrightarrow |Z_i| < 1$

AR processes estimation ? The Yule-Walker system for AR(N) processes

 \Longrightarrow

The Yule-Walker system for AR(N) processes

The Yule-Walker system for AR(N) processes

$$\begin{pmatrix} R_X[0] & R_X[1] & \dots & R_X[N-1] \\ R_X[1] & R_X[0] & \dots & R_X[N-2] \\ R_X[2] & R_X[1] & \dots & R_X[N-3] \\ \dots & \dots & \dots & \dots \\ R_X[N-2] & R_X[N-3] & \dots & R_X[1] \\ R_X[N-1] & R_X[N-2] & \dots & R_X[0] \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \dots \\ a_{N-1} \\ a_N \end{pmatrix} = \begin{pmatrix} R_X[1] \\ R_X[2] \\ R_X[3] \\ \dots \\ R_X[N-1] \\ R_X[N-1] \end{pmatrix}$$

Levinson Durbin algorithm $O(N^2)$ $\implies \{a_k\}_{k \in [1,N]}$ estimation

Variance estimation

$$\sigma^2 = R_X[0] - \sum_{k=1}^N a_k R_X[k]$$

If we only have access to a single realization of X[n]

•
$$X[n] \longrightarrow x[n]$$

• $R_X[k] \longrightarrow r_x[k] = \frac{1}{P} \sum_{p=0}^{P-1} x[p] x[p+k]$

If we only have access to a single realization of X[n]

$$\begin{pmatrix} r_{x}[0] & r_{x}[1] & \dots & r_{x}[N-1] \\ r_{x}[1] & r_{x}[0] & \dots & r_{x}[N-2] \\ \dots & \dots & \dots & \dots \\ r_{x}[N-2] & r_{x}[N-3] & \dots & r_{x}[1] \\ r_{x}[N-1] & r_{x}[N-2] & \dots & r_{x}[0] \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \dots \\ a_{N-1} \\ a_{N} \end{pmatrix} = \begin{pmatrix} r_{x}[1] \\ r_{x}[2] \\ \dots \\ r_{x}[N-1] \\ r_{x}[N] \end{pmatrix}$$

$$\sigma^2 = r_x[0] - \sum_{k=1}^N a_k r_x[k]$$

Linear prediction problem :

 ${x[n]}_n$ is a signal, what are the optimal coefficients ${a_k}_{k \in [1,N]}$ that allows the best prediction of x[n] from ${x[n-1], \ldots, x[n-N]}$, i.e.,

$$ilde{x}[n] = -\sum_{k=1}^N a_k x[n-k], \quad ext{with} \quad \sum_n | ilde{x}[n] - x[n]|^2 ext{ minimum}$$

Solving linear prediction \iff solving Yule-Walker :

$$\begin{pmatrix} r_{x}[0] & r_{x}[1] & \dots & r_{x}[N-1] \\ r_{x}[1] & r_{x}[0] & \dots & r_{x}[N-2] \\ \dots & \dots & \dots & \dots \\ r_{x}[N-2] & r_{x}[N-3] & \dots & r_{x}[1] \\ r_{x}[N-1] & r_{x}[N-2] & \dots & r_{x}[0] \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \dots \\ a_{N-1} \\ a_{N} \end{pmatrix} = \begin{pmatrix} r_{x}[1] \\ r_{x}[2] \\ \dots \\ r_{x}[N-1] \\ r_{x}[N] \end{pmatrix}$$

$$\sigma^2 = r_x[0] - \sum_{k=1}^N a_k r_x[k]$$

- Excitation : Glotal pulse train $A \sum_k \delta[n + kP]$
- Resonance : AR(N) filter

\implies Estimation ?

The model

$$x[n] = -\sum_{k=1}^{N} a_k x[n-k] + e[n]$$

where

$$e[n] = \sum_{k} \delta[n + kP]$$

Goal : we want to prove that

Linear prediction solution $\simeq \{a_k\}_{k \in [1,N]}$

Conclusion

- Excitation : Glotal pulse train $A \sum_k \delta[n + kP]$
- Resonance : AR(N) filter

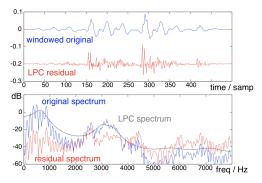
If P is "large enough" then solving Yule-Walker leads to the $\mathsf{AR}(\mathsf{N})$ coeffiients estimation

Intuition ?

- 0. Choose N (order of the AR filter)
- Then, on sliding windows
 - 1. Excitation : Noise and/or Pulse train
 - P : period of Pulse train (using e.g., autocovariance function)
 - 2. Solving Yule-Walker
 - $\{a_k\}_{k \in [1,N]}$ estimation
 - σ^2 : variance of noise
 - A : amplitude of pulse train

V.6 Linear Prediction coding

LPC spectrum on a windowed signal



LPC poles

Audio Signal Processing : V. Speech processing - MVA 34

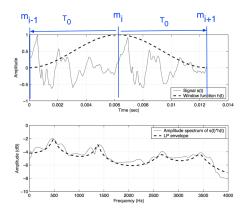
Applications

- Analysis-Synthesis (coding-transmission)
 - e.g., low-bit rate coding : LPC-10 (2400 bits/s)
 - *N* = 10 (5 formants)
 - Fs = 8kHz
 - window size K = 180
- Recognition/classification
- Modification

$\mathsf{P}\text{-}\mathsf{SOLA}: \mathsf{Pitch}\text{-}\mathsf{Synchronous}\ \mathsf{Overlapp}\ \mathsf{Add}$

Analysis :

- Elementary wave form (signal windowing around glottal closure)
- Hypothesis : We get the IR of the LPC filter



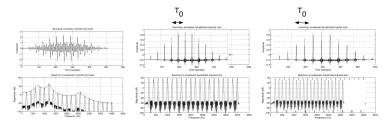
V.7 P-SOLA Method

P-SOLA : Pitch-Synchronous Overlapp Add Pitch modification (decreasing) :



LP-P-SOLA : Linear Predictive Pitch-Synchronous Overlapp Add = deconvolution using LPC filter + P-SOLA

Pitch modification (decreasing) :



Diphone synthesis

 \longrightarrow Problems in phone-concatenation synthesis

- phonems are context-dependent
- coarticulation is complex
- transitions are critical to perception
- \Longrightarrow store transitions instead of just phonemes !
- Splicing diphones together using PSOLA techniques

V.9 Cepstrum

Different steps :

• Step 1. : The Fourier transform

$$\hat{s}(\omega) = \int s(t) e^{-i\omega t} dt$$

• Step 2. : Take the (complex) logarithm

 $\log(s(\omega))$

• Step 3: Take the inverse fourier transform

$$C(au) = \int e^{i\omega au} \log(\hat{s}(\omega)) d\omega$$

Definitions

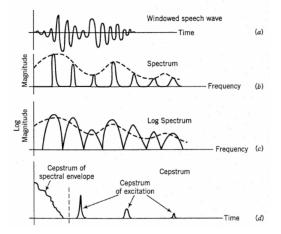
- τ : quefrency
- $C(\tau)$: cepstrum

What the hell are we using cepstrum for ?

Source/fiter model

- $s(t) = e(t) \star h(t)$
- $\hat{s}(\omega) = \hat{e}(\omega)\hat{h}(\omega)$
- $\log(\hat{s}(\omega)) = \log(\hat{e}(\omega)) + \log(\hat{h}(\omega))$
- $C_s(\tau) = C_e(\tau) + C_h(\tau)$
 - $C_e(\tau)$: most energy concentrated at high quefrency
 - $C_h(\tau)$: most energy concentrated at low quefrency

What the hell are we using cepstrum for ?



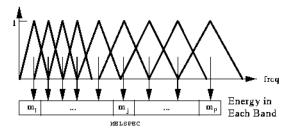
Different steps :

- $\hat{s}(\omega) = \int s(t)e^{-i\omega t}dt = A(\omega)e^{i\phi(\omega)}$
- $\log(\hat{s}(\omega)) = \log(A(\omega)) + i\phi(\omega)$
- $\Re(\log(\hat{s}(\omega))) = \log(A(\omega))$
- $C(\tau) = \int e^{i\omega\tau} \Re(\log(\hat{s}(\omega))) d\omega$

Towards audio descriptors : Desribe the timber of an audio signal with few coefficients

- MFCC : Mel Frequency Cepstral Coefficients
- **Definition** : Real cepstrum computed computed on an energy spectrum after being converted in a perceptive scale
- **Why ?** The ear has better resolution at low frequeny than high frequency
- Which perceptive scales ? Mel (Bark, ERB filters, Gamma tone)
- What is it used for ? Thay are the most used descriptors for audio signals

The Mel scale : This is a set of (generally) 40 triangular filters applied to the periodogram power spectral estimate



V.9 MFCC

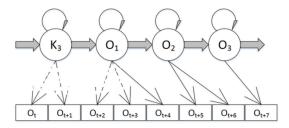
MFCC step by step

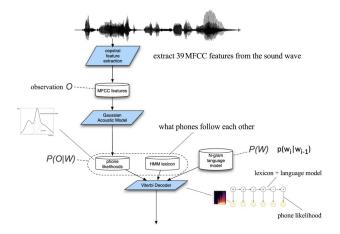
- Compute Fourier spectrum intensity $|\hat{s}(\omega)|^2$
- Compute The Mel filters
 - Number of filters (40)
 - Shape fo filters (triangle, ...)
- Compute the spectrum intensity in the Mel scale $S(b) = \sum_{\omega} |\hat{s}(\omega)|^2 H_b(\omega)$
- Take the log log S(b)
- Inverse Fourier transform (or IDCT) $\log S(b)$
- Select coefficients close to 0 (generally 10-15)

GMM : Phoneme model (using MFCC)

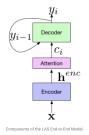
- \longrightarrow generally each phoneme is ut in 3 parts
 - begining (O_1)
 - middle (O₂)
 - end (*O*₃)

HMM : Chaining of the different parts





V.10 Speech recognition using Neural networks



State of the art speech reognition with sequence-to-sequence models, Google, 2017

- 80 Mel-filters (25ms window, shifted 10ms)
- Encoder : 5-layer LSTM with 1400 hidden units
- Attention with 4 heads
- Decoder 2-layer LSTM with 1024 units

Trained on 12.500 hours of Google search voice recording : 5.6% word error (HMM-LSTM : 6.7%)