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V.1 Speech physiology

E.Bacry Audio Signal Processing : V. Speech processing - MVA 2



V.1 Speech physiology

Towards an Excitation/Resonance model

Hypothesis : Excitation and Resonance parts are independant
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V.1 Speech physiology

Towards an Excitation/Resonance (Source/filter) model

The Excitation part.....
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V.1 Speech physiology

Towards an Excitation/Resonance (Source/filter) model

... followed by the Resonance part
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V.1 Speech physiology

Vowels

Excitation : Glottal pulse train
Pitch = train period
Which vowel = given by resonance
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V.1 Speech physiology

Consonant

Plosives : brutal opening of the vocal tract
Fricatives : constriction of the vocal tract
Nasals
and many more . . .
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V.1 Speech physiology

Consonant : a little game

plosives fricatives
palatal ?/? ?/?
labial ?/? ?/?
dental ?/? ?/?

Voiced/Unvoiced
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V.2 Excitation/Resonance Model : The resonance part

Each tube =⇒ ' AR(2)
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V.2 Excitation/Resonance Model : The resonance part

The Resonance model

Sum of formant (resonance)
Each formant ' AR(2)

ω0 : resonance frequency
∆ω : band width
A : gain

Resonance ' AR(2N) filter H2N
(4-5 formants are enough for vowel recognition)
Lips radiation : High-pass filter 1− Z−1
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V.2 Excitation/Resonance Model : The excitation part

A. A Glottal pulse train model

Glottal pulse train of wave form ' Ag(t) (with
∫

g(t)dt = 1)
Amplitude : A
Period : T
Support of g << T

G(t) =
∑

n
Ag(t − nT ) = Ag ?

∑
n
δ(t − nT )
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V.2 Excitation/Resonance Model : The excitation part

A. A Glottal pulse train model

G(t) = Ag ?
∑

n
δ(t − nT ) =⇒ Ĝ(ω) = 2πA

T ĝ
∑

n
δ(ω − 2πk

T )

Pitch is 1/T (fundamental frequency)
Glottal train + Resonance (H2N : AR(2N))

H2N ? G(t) = AH2N ? g ?
∑

n
δ(t − nT )

Resonance approximation : we take care of g in the resonance
part

H2N −→ H2N ? g
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V.2 Excitation/Resonance Model : The excitation part

A. A Glottal pulse train model

A simple final model

G(t) = A
∑

n
δ(t − nT )

With only two parameters

A : Amplitude
T : Period
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V.2 Excitation/Resonance Model : The excitation part

B. A Frication noise model

F (t) = Ah ?W (t)

where
W (t) : is a normalized white noise
A : Amplitude
h(t) : is a low pass filter
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V.2 Excitation/Resonance Model : The excitation part

B. A Frication noise model

F (t) = Ah ?W (t)

Frication + resonance :

H2N ? F (t) = AH2N ? h ?W (t)

=⇒ Resonance approximation : we take care of h in the resonance
part

H2N −→ H2N ? h
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V.2 Excitation/Resonance Model : The excitation part

B. A Frication noise model

A simple final model

F (t) = AW (t)

With a single parameter !

A : Amplitude
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V.3 AR processes

Excitation : Frication
Resonance : AR(N) filter

=⇒ AR Processes
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V.3 AR processes

Definition of AR(N) process X [n]

X [n] +
N∑

k=1
akX [n − k] = W [n]

where
W [n] is a white noise of variance σ2

{ak}k∈[1,N] ∈ RN (a0 = 1)

⇐⇒

a ? X [n] = W [n]
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V.3 AR processes

a ? X [n] = W [n]

A first important question :

Is there a stationary solution ?
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V.3 AR processes

a ? X [n] = W [n]

A first important question :

Is there a stationary solution ?

YES : if the inverse filter of a is stable

⇐⇒ All the zeros of â(Z ) are such that |Z | < 1
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V.3 AR processes

a ? X [n] = W [n]

A second important question :

How do we manage initialization ?

E.Bacry Audio Signal Processing : V. Speech processing - MVA 21



V.3 AR processes

a ? X [n] = W [n]

A second important question :

How do we manage initialization ? (stationarity ?)

Theorem if {Y [n]}n is a process such that

h ? Y [n] = 0

where h[n] is a FIR filter, then

lim
n→+∞

Y [n] = 0 iff ĥ(Zi ) = 0⇔ |Zi | < 1
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V.3 AR processes

AR processes estimation ? The Yule-Walker system for
AR(N) processes

=⇒

The Yule-Walker system for AR(N) processes
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V.3 AR processes

The Yule-Walker system for AR(N) processes



RX [0] RX [1] . . . RX [N − 1]
RX [1] RX [0] . . . RX [N − 2]
RX [2] RX [1] . . . RX [N − 3]
. . . . . . . . . . . .

RX [N − 2] RX [N − 3] . . . RX [1]
RX [N − 1] RX [N − 2] . . . RX [0]





a1
a2
a3
. . .

aN−1
aN


=



RX [1]
RX [2]
RX [3]
. . .

RX [N − 1]
RX [N]



Levinson Durbin algorithm O(N2)

=⇒ {ak}k∈[1,N] estimation
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V.3 AR processes

Variance estimation

σ2 = RX [0]−
N∑

k=1
akRX [k]
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V.3 AR processes

If we only have access to a single realization of X [n]

X [n] −→ x [n]
RX [k] −→ rx [k] = 1

P
∑P−1

p=0 x [p]x [p + k]
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V.3 AR processes

If we only have access to a single realization of X [n]
rx [0] rx [1] . . . rx [N − 1]
rx [1] rx [0] . . . rx [N − 2]
. . . . . . . . . . . .

rx [N − 2] rx [N − 3] . . . rx [1]
rx [N − 1] rx [N − 2] . . . rx [0]




a1
a2
. . .

aN−1
aN

 =


rx [1]
rx [2]
. . .

rx [N − 1]
rx [N]



σ2 = rx [0]−
N∑

k=1
ak rx [k]
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V.4 Linear prediction

Linear prediction problem :

{x [n]}n is a signal, what are the optimal coefficients {ak}k∈[1,N]
that allows the best prediction of x [n] from
{x [n − 1], . . . , x [n − N]}, i.e.,

x̃ [n] = −
N∑

k=1
akx [n − k], with

∑
n
|x̃ [n]− x [n]|2 minimum
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V.4 Linear prediction

Solving linear prediction ⇐⇒ solving Yule-Walker :


rx [0] rx [1] . . . rx [N − 1]
rx [1] rx [0] . . . rx [N − 2]
. . . . . . . . . . . .

rx [N − 2] rx [N − 3] . . . rx [1]
rx [N − 1] rx [N − 2] . . . rx [0]




a1
a2
. . .

aN−1
aN

 =


rx [1]
rx [2]
. . .

rx [N − 1]
rx [N]



σ2 = rx [0]−
N∑

k=1
ak rx [k]

E.Bacry Audio Signal Processing : V. Speech processing - MVA 29



V.5 Estimation when excitation is a Glottal pulse train

Excitation : Glotal pulse train A
∑

k δ[n + kP]
Resonance : AR(N) filter

=⇒ Estimation ?
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V.5 Estimation when excitation is a Glottal pulse train

The model

x [n] = −
N∑

k=1
akx [n − k] + e[n]

where

e[n] =
∑

k
δ[n + kP]

Goal : we want to prove that

Linear prediction solution ' {ak}k∈[1,N]
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V.5 Estimation when excitation is a Glottal pulse train

Conclusion

Excitation : Glotal pulse train A
∑

k δ[n + kP]
Resonance : AR(N) filter

If P is "large enough" then solving Yule-Walker leads to the AR(N)
coeffiients estimation

Intuition ?
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V.6 Linear Prediction coding

0. Choose N (order of the AR filter)

Then, on sliding windows
1. Excitation : Noise and/or Pulse train

P : period of Pulse train (using e.g., autocovariance function)
2. Solving Yule-Walker
{ak}k∈[1,N] estimation
σ2 : variance of noise
A : amplitude of pulse train
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V.6 Linear Prediction coding

LPC spectrum on a windowed signal

LPC poles
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V.6 Linear Prediction coding

Applications
Analysis-Synthesis (coding-transmission)
e.g., low-bit rate coding : LPC-10 (2400 bits/s)

N = 10 (5 formants)
Fs = 8kHz
window size K = 180

Recognition/classification
Modification
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V.7 P-SOLA Method

P-SOLA : Pitch-Synchronous Overlapp Add
Analysis :

Elementary wave form (signal windowing around glottal
closure)
Hypothesis : We get the IR of the LPC filter
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V.7 P-SOLA Method

P-SOLA : Pitch-Synchronous Overlapp Add
Pitch modification (decreasing) :
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V.7 LP-P-SOLA Method

LP-P-SOLA : Linear Predictive Pitch-Synchronous Overlapp Add
= deconvolution using LPC filter + P-SOLA

Pitch modification (decreasing) :
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V.8 Diphone synthesis

Diphone synthesis
−→ Problems in phone-concatenation synthesis

phonems are context-dependent
coarticulation is complex
transitions are critical to perception

=⇒ store transitions instead of just phonemes !

Splicing diphones together using PSOLA techniques
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V.9 Cepstrum

Different steps :

Step 1. : The Fourier transform

ŝ(ω) =
∫

s(t)e−iωtdt

Step 2. : Take the (complex) logarithm

log(s(ω))

Step 3: Take the inverse fourier transform

C(τ) =
∫

eiωτ log(ŝ(ω))dω

Definitions
τ : quefrency
C(τ) : cepstrum

E.Bacry Audio Signal Processing : V. Speech processing - MVA 40



V.9 Cepstrum

What the hell are we using cepstrum for ?

Source/fiter model

s(t) = e(t) ? h(t)
ŝ(ω) = ê(ω)ĥ(ω)
log(ŝ(ω)) = log(ê(ω)) + log(ĥ(ω))
Cs(τ) = Ce(τ) + Ch(τ)

Ce(τ) : most energy concentrated at high quefrency
Ch(τ) : most energy concentrated at low quefrency
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V.9 Cepstrum

What the hell are we using cepstrum for ?
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V.9 Real Cepstrum

Different steps :

ŝ(ω) =
∫

s(t)e−iωtdt = A(ω)eiφ(ω)

log(ŝ(ω)) = log(A(ω)) + iφ(ω)
<(log(ŝ(ω))) = log(A(ω))
C(τ) =

∫
eiωτ<(log(ŝ(ω)))dω

Towards audio descriptors : Desribe the timber of an audio signal
with few coefficients
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V.9 MFCC

MFCC : Mel Frequency Cepstral Coefficients

Definition : Real cepstrum computed computed on an energy
spectrum after being converted in a perceptive scale

Why ? The ear has better resolution at low frequeny than high
frequency

Which perceptive scales ? Mel (Bark, ERB filters, Gamma tone)

What is it used for ? Thay are the most used descriptors for
audio signals
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V.9 MFCC

The Mel scale : This is a set of (generally) 40 triangular filters
applied to the periodogram power spectral estimate
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V.9 MFCC

MFCC step by step

Compute Fourier spectrum intensity |ŝ(ω)]2
Compute The Mel filters

Number of filters (40)
Shape fo filters (triangle, . . . )

Compute the spectrum intensity in the Mel scale
S(b) =

∑
ω |ŝ(ω)]2Hb(ω)

Take the log log S(b)
Inverse Fourier transform (or IDCT) log S(b)
Select coefficients close to 0 (generally 10-15)
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V.10 Speech recognition using GMM-HMM models

GMM : Phoneme model (using MFCC)
−→ generally each phoneme is ut in 3 parts

begining (O1)
middle (O2)
end (O3)

HMM : Chaining of the different parts
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V.11 Speech recognition using GMM-HMM models
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V.10 Speech recognition using Neural networks

State of the art speech reognition with sequence-to-sequence
models, Google, 2017

80 Mel-filters (25ms window, shifted 10ms)
Encoder : 5-layer LSTM with 1400 hidden units
Attention with 4 heads
Decoder 2-layer LSTM with 1024 units

Trained on 12.500 hours of Google search voice recording : 5.6%
word error (HMM-LSTM : 6.7%)
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