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V.1 Speech physiology

Towards an Excitation/Resonance model
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Hypothesis : Excitation and Resonance parts are independant
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V.1 Speech physiology

Towards an Excitation/Resonance (Source/filter) model
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V.1 Speech physiology

Towards an Excitation/Resonance (Source/filter) model
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... followed by the Resonance part
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V.1 Speech physiology

Vowels

@ Excitation : Glottal pulse train
@ Pitch = train period
@ Which vowel = given by resonance
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V.1 Speech physiology

Consonant

Plosives : brutal opening of the vocal tract
Fricatives : constriction of the vocal tract

Nasals

and many more ...
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V.1 Speech physiology

Consonant : a little game

plosives | fricatives
palatal ?/? ?/7
labial 77 77
dental ?/? ?/7
Voiced /Unvoiced
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V.2 Excitation/Resonance Model : The resonance part
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Each tube — ~ AR(2)
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V.2 Excitation/Resonance Model : The resonance part

The Resonance model

@ Sum of formant (resonance)
e Each formant ~ AR(2)

e wp : resonance frequency
e Aw : band width
e A: gain
@ Resonance >~ AR(2N) filter Hap
(4-5 formants are enough for vowel recognition)

e Lips radiation : High-pass filter 1 — Z~!
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V.2 Excitation/Resonance Model : The excitation part

A. A Glottal pulse train model

Glottal pulse train of wave form ~ Ag(t) (with [ g(t)dt =1)
Amplitude : A

Period : T

Support of g << T

G(t) = ZAg(t —nT) = Ag*Zd(t —nT)
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V.2 Excitation/Resonance Model : The excitation part

A. A Glottal pulse train model

G(t)=Ag*> §(t—nT) = G(w) = ?QZ(S((A} - =)

e Pitch is 1/ T (fundamental frequency)
@ Glottal train 4+ Resonance (Hay : AR(2N))

Hon * G(t) = AHopn * g * Zé(t —nT)

@ Resonance approximation : we take care of g in the resonance
part
Hony — Hon < g
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V.2 Excitation/Resonance Model : The excitation part

A. A Glottal pulse train model
A simple final model
G(t)=A> 6(t—nT)

With only two parameters

e A: Amplitude
@ T : Period
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V.2 Excitation/Resonance Model : The excitation part

B. A Frication noise model

F(t) = Ah* W(t)
where
e W(t) : is a normalized white noise
e A: Amplitude

@ h(t) : is a low pass filter
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V.2 Excitation/Resonance Model : The excitation part

B. A Frication noise model

F(t) = Ahx W(t)

Frication + resonance :

Hon * F(t) = AHon * hx W(t)

= Resonance approximation : we take care of h in the resonance
part
H2N — H2N *x h
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V.2 Excitation/Resonance Model : The excitation part

B. A Frication noise model

A simple final model

F(t) = AW(t)
With a single parameter !

o A: Amplitude
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V.3 AR processes

@ Excitation : Frication
@ Resonance : AR(N) filter

—> AR Processes
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V.3 AR processes

Definition of AR(N) process X[n]

N
X[n] + Z aX[n — k] = W(n]
k=1
where
o W{n] is a white noise of variance o

o {aitkep,n € RY (a0 =1)

—

ax X[n] = W[n]
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V.3 AR processes

ax X[n] = W|n]
A first important question :

@ Is there a stationary solution ?
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V.3 AR processes

ax X[n] = W|n]
A first important question :

@ Is there a stationary solution ?

YES : if the inverse filter of a is stable
<= All the zeros of 3(Z) are such that |Z| < 1
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V.3 AR processes

ax X[n] = W|n]
A second important question :

@ How do we manage initialization ?

E.Bacry Audio Signal Processing : V. Speech processing - MVA



V.3 AR processes

ax X[n] = W|n]
A second important question :

@ How do we manage initialization 7 (stationarity ?)

Theorem if {Y[n]}, is a process such that
h Y[n] =0
where h[n] is a FIR filter, then

lim Y[n]=0 iff h(Z)=0<|Z]<1

n—-+oo
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V.3 AR processes

AR processes estimation ? The Yule-Walker system for
AR(N) processes

=

The Yule-Walker system for AR(N) processes
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V.3 AR processes

The Yule-Walker system for AR(N) processes

Rx[O] Rx[].] Rx[/\/— 1] ai Rx[l]

Rx[].] Rx[O] Rx[N—Q] a» Rx[2]

Rx[2] Rx[].] Rx[/\/—3] as _ Rx[3]
RxIN-2] RxIN-3] ... Rx[l] ||ava]| |RxIN-1]
Rx[N—l] Rx[N—Q] Rx[O] an Rx[N]

Levinson Durbin algorithm O(N?)

- {ak}ke[l,N] estimation
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V.3 AR processes

Variance estimation

N
0‘2 — Rx[O] — Z aka[k]
k=1
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V.3 AR processes

If we only have access to a single realization of X|[n]

e X[n] — x[n]
o Rxlk] — rulk] = 3 SP-d x[plxlp + K]
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V.3 AR processes

If we only have access to a single realization of X|[n]

r«[0] r[1] oo I[N =1] a re[1]
ri[1] r«[0] oo I[N =2] a r[2]
RIN-2) nIN-3 . 1] | |av | | sIV-1)

n[N—=1] n[N-=2] ... r«[0] an r[N]

N
02 = r,[0] — Z ak rx [ K]
k=1
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V.4 Linear prediction

Linear prediction problem :

{x[n]}n is a signal, what are the optimal coefficients {ak }xe[1,n
that allows the best prediction of x[n] from
{x[n—1],...,x[n— N}, i.e.,

N
X[n] = — Z agx[n— k], with Z %[n] — x[n]|® minimum
k=1 n
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V.4 Linear prediction

Solving linear prediction <= solving Yule-Walker :

r«[0] r«[1] oo I[N —1] a r[1]
re[1] r«[0] oo I[N =2] a» r«[2]
RN=2] nIN=3] ... ] |lava| |nN-1]

N —=1] rn[N-=2] ... r«[0] an r[ V]

N
0% = r[0] — > arlk]
k=1
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V.5 Estimation when excitation is a Glottal pulse train

e Excitation : Glotal pulse train AY, d[n + kP]
@ Resonance : AR(N) filter

— Estimation ?
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V.5 Estimation when excitation is a Glottal pulse train

The model

N
x[n] = — Z agx[n — k] + e[n]
k=1
where
e[n] = Zé[n + kP]
k

Goal : we want to prove that

Linear prediction solution =~ {ak }yeq1,n
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V.5 Estimation when excitation is a Glottal pulse train

Conclusion

e Excitation : Glotal pulse train AY, §[n+ kP]
@ Resonance : AR(N) filter

If P is "large enough" then solving Yule-Walker leads to the AR(N)
coeffiients estimation

Intuition ?
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V.6 Linear Prediction coding

0. Choose N (order of the AR filter)

Then, on sliding windows
1. Excitation : Noise and/or Pulse train
e P : period of Pulse train (using e.g., autocovariance function)

2. Solving Yule-Walker

® {ak}kefu,n) estimation

@ o2 : variance of noise

@ A : amplitude of pulse train
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Linear Prediction coding

LPC spectrum on a windowed signal
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V.6 Linear Prediction coding

Applications

@ Analysis-Synthesis (coding-transmission)
e.g., low-bit rate coding : LPC-10 (2400 bits/s)

o N =10 (5 formants)
o Fs =8kHz
e window size K = 180

@ Recognition /classification

@ Modification
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V.7 P-SOLA Method

P-SOLA : Pitch-Synchronous Overlapp Add
Analysis :
e Elementary wave form (signal windowing around glottal
closure)
@ Hypothesis : We get the IR of the LPC filter

Amplitude
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V.7 P-SOLA Method

P-SOLA : Pitch-Synchronous Overlapp Add
Pitch modification (decreasing) :
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V.7 LP-P-SOLA Method

LP-P-SOLA : Linear Predictive Pitch-Synchronous Overlapp Add
= deconvolution using LPC filter + P-SOLA

Pitch modification (decreasing) :
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L
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el e
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V.8 Diphone synthesis

Diphone synthesis
— Problems in phone-concatenation synthesis

@ phonems are context-dependent
@ coarticulation is complex

@ transitions are critical to perception
= store transitions instead of just phonemes !

Splicing diphones together using PSOLA techniques
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Different steps :

@ Step 1. : The Fourier transform

§(w) = / s(t)e "t dt
@ Step 2. : Take the (complex) logarithm

log(s(w))

@ Step 3: Take the inverse fourier transform
C(r) = / &7 log(5(w)) dw

Definitions
e 7 : quefrency

e C(7) : cepstrum
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What the hell are we using cepstrum for ?

Source/fiter model

s(t) = e(t) x h(t)

Cs(7) = Ce(1) + Cp(7)
(7) : most energy concentrated at high quefrency
Ch(7) : most energy concentrated at low quefrency
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V.9 Cepstrum

What the hell are we using cepstrum for 7

Windowed speech wave
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V.9 Real Cepstrum

Different steps :
o 5(w) = [s(t)e “tdt = A(w)e/®)
o log(5(w)) = log(A(w)) + id(w)
° R(log(5(w))) = log(A(w))
o C(1) = [e“R(log(5(w)))dw

Towards audio descriptors : Desribe the timber of an audio signal
with few coefficients
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V.9 MFCC

MFCC : Mel Frequency Cepstral Coefficients

Definition : Real cepstrum computed computed on an energy
spectrum after being converted in a perceptive scale

Why ? The ear has better resolution at low frequeny than high
frequency

Which perceptive scales ? Mel (Bark, ERB filters, Gamma tone)

What is it used for ? Thay are the most used descriptors for
audio signals
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V.9 MFCC

The Mel scale : This is a set of (generally) 40 triangular filters
applied to the periodogram power spectral estimate

= [rcq

YYyYyYyYyY vy vy vy ¥y

| !{ Energy in
"] Each Band

HELEPEC
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V.9 MFCC

MFCC step by step

Compute Fourier spectrum intensity |3(w)]?
Compute The Mel filters

o Number of filters (40)
e Shape fo filters (triangle, ...)

Compute the spectrum intensity in the Mel scale
S(b) = X2, [8(w)]*Hp(w)

Take the log log S(b)

Inverse Fourier transform (or IDCT) log S(b)

Select coefficients close to 0 (generally 10-15)
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V.10 Speech recognition using GMM-HMM models

GMM : Phoneme model (using MFCC)
— generally each phoneme is ut in 3 parts

@ begining (O1)
e middle (0,)
e end (03)

HMM : Chaining of the different parts

’ Ot | Ohl l 0:.2 l 0:»3 | O:‘a ” Ot~5 I Ot+6 l Ou7
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V.11 Speech recognition using GMM-HMM models

cepstral
feature
extraction

extract 39 MFCC features from the sound wave

Gaussian
, Acoustic Model

AU what phones follow each other
/

P(W) P(Wi|Wi.1)

phone likelihood
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V.10 Speech recognition using Neural networks
Yi

c;

* hene

X

Components of the LAS End-to-End Model

State of the art speech reognition with sequence-to-sequence
models, Google, 2017

@ 380 Mel-filters (25ms window, shifted 10ms)

@ Encoder : 5-layer LSTM with 1400 hidden units

@ Attention with 4 heads

@ Decoder 2-layer LSTM with 1024 units

Trained on 12.500 hours of Google search voice recording : 5.6%
word error (HMM-LSTM : 6.7%)
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